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Abstract
Trauma-focused psychotherapy is the first-line treatment for posttraumatic stress disorder (PTSD) but 30–50% of
patients do not benefit sufficiently. We investigated whether structural and resting-state functional magnetic
resonance imaging (MRI/rs-fMRI) data could distinguish between treatment responders and non-responders on the
group and individual level. Forty-four male veterans with PTSD underwent baseline scanning followed by trauma-
focused psychotherapy. Voxel-wise gray matter volumes were extracted from the structural MRI data and resting-state
networks (RSNs) were calculated from rs-fMRI data using independent component analysis. Data were used to detect
differences between responders and non-responders on the group level using permutation testing, and the single-
subject level using Gaussian process classification with cross-validation. A RSN centered on the bilateral superior frontal
gyrus differed between responders and non-responder groups (PFWE < 0.05) while a RSN centered on the pre-
supplementary motor area distinguished between responders and non-responders on an individual-level with 81.4%
accuracy (P < 0.001, 84.8% sensitivity, 78% specificity and AUC of 0.93). No significant single-subject classification or
group differences were observed for gray matter volume. This proof-of-concept study demonstrates the feasibility of
using rs-fMRI to develop neuroimaging biomarkers for treatment response, which could enable personalized
treatment of patients with PTSD.

Introduction
Posttraumatic stress disorder (PTSD) is a psychiatric

disorder that can develop after experiencing a traumatic
event. It is characterized by states of re-experiencing of
the traumatic event, avoidance of trauma-reminders,
emotional numbing, and hyperarousal1. PTSD lifetime
prevalence rates in the general population are estimated
to be below 10% (varying between 1.3 to 8.8% depending
on the country)2,3 but can vary heavily in veterans
(between 1.4 to 31%)4,5. Treatment of PTSD typically

involves trauma-focused psychotherapy with or without
the administration of medication such as selective ser-
otonin reuptake inhibitors (SSRIs). Trauma-focused
therapies, such as trauma-focused cognitive behavior
therapy (TF-CBT) or eye movement desensitization and
reprocessing (EMDR) have been suggested as first-line
treatments for treating PTSD6,7. However, 30–50% of
patients do not benefit sufficiently8. To improve treat-
ment response rates it is important to better understand
differences between responders and non-responders, and
identify reliable predictors for treatment outcome.
PTSD is characterized as a brain disorder showing

alterations in activity and connectivity of cortical and sub-
cortical brain regions. The neurocircuitry model of PTSD
suggests that PTSD pathology is characterized by hyper-
activity and increased connectivity of the amygdala, the
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anterior insula and the anterior cingulate cortex,
decreased activity of the ventromedial prefrontal cortex
(vmPFC) and hypoconnectivity between vmPFC, hippo-
campus and amygdala9–12. Functional connectivity of
these regions can be recorded using neuroimaging tech-
niques such as resting-state functional magnetic reso-
nance imaging (rs-fMRI). Therefore, it is important to
investigate if those alterations in rs-fMRI connectivity
could be used to predict treatment-outcome and reveal
biomarkers to increase the treatment-response rate.
Indeed, pre-treatment group differences in fMRI activity
and connectivity were observed between responders and
non-responders in PTSD in several studies13–17. However,
these group-level univariate analyses focus on average
differences between responders and non-responders. This
does not allow inference at the individual patient level,
which can be achieved using multivariate supervised
machine learning analyses18,19. Most importantly, per-
formance is evaluated on new data to estimate the gen-
eralizability of the trained models, and thereby enabling
the prediction of treatment outcome for new patients.
Machine-learning analyses have been performed in the
context of PTSD using different modalities of MRI data to
distinguish between patients and controls20–23. However,
only two studies to date have used machine learning
analyses to predict future outcome at an individual level.
One study aimed to predict clinical status two years after
treatment with 12 weeks of paroxetine in a sample of 20
civilian PTSD patients24. This study used pre- and post-
treatment rs-fMRI derived measures, namely amplitude of
low-frequency fluctuations and whole-brain degree cen-
trality maps, and the results showed that pre- but not
post-treatment measures were able to predict remission
status after two years with an accuracy of 72.5%. But as all
but one patient had been in remission shortly after
treatment, these results reflect relapse rather than treat-
ment outcome. In addition, one recent study used a
combination of resting-state connectivity within the
ventral attention network and delayed recall performance
in a verbal memory task to predict the response to pro-
longed exposure therapy in ~19 civilian patients with
PTSD25. Although the proportion of treatment non-
responders was low, the classifier still managed to dis-
tinguish the groups with ≥80% sensitivity and specificity.
To determine whether neuroimaging data could also

predict treatment outcome in a larger sample of combat
veterans with PTSD, we analyzed pre-treatment structural
MRI and rs-fMRI data of 44 patients who received
treatment-as-usual. This consisted of trauma-focused
psychotherapy such as TF-CBT and EMDR, and clinical
outcome was determined 6–8 month following the base-
line fMRI scan. We previously reported pre-treatment
group differences in structural26, white-matter27 and task-
based (f)MRI13,28 between responders and non-

responders, as well as rs-fMRI differences between
patients and controls29. In another study, we explored
time-by-group interactions between remitted and persis-
tent PTSD patients based on network measures derived
from rs-fMRI30. In the current study, we focus on pre-
treatment MRI measures exclusively within a machine-
learning paradigm. We extracted functional connectivity
(FC) within resting-state networks (RSNs) using inde-
pendent component analysis (ICA). ICA was chosen as
the method for analyzing rs-fMRI because it provides a
multivariate and data-driven way to identify multiple
RSN’s present in the data. It does not require the defini-
tion of seed regions and is more robust to noise31. To
ensure independence between RSN identification and
estimation of RSN expression for each individual patient,
the ICA was performed on rs-fMRI data of sex and age
matched combat controls (n= 28). In addition, we
derived maps of regional gray matter volume using voxel-
based morphometry (VBM). Abnormalities in structural
MRI data have been repeatedly linked to treatment-
response in PTSD26,32–35 and we therefore used it as a
standardized and easy to acquire imaging baseline. For
both the rs-fMRI and VBM data, we performed univariate
inference on the group level as well as multivariate pre-
diction on the single-subject level using Gaussian process
classification (GPC) with 10 × 10 cross-validation. The
current study is exploratory and investigated the general
feasibility of structural and rs-fMRI data to predict
treatment-outcome in PTSD on the single-subject level.
Because of its exploratory nature, there were no a priori
hypotheses formulated.

Materials and methods
Participants
In total 57 veterans with PTSD and 29 combat controls

(CC) were included in the study. Patients were recruited
from one of four outpatient clinics of the Military Mental
Healthcare Organization in Utrecht, The Netherlands.
PTSD diagnosis was established by a licensed psychologist
or psychiatrist. The Clinician Administered PTSD scale
(CAPS)36 for DSM-IV1 was administered by trained
research staff to quantify the total symptom severity and
had to be ≥45. Combat controls had to have no current
psychiatric disorders and a total CAPS score < 15. Further
inclusion criteria for all subjects were deployment to a war
zone and 18–60 years of age. Comorbid disorders were
examined using the structured clinical interview for DSM-
IV (SCID-I)37. Subjects with a history of neurological
disorders, current substance dependence and contra-
indications for MRI scanning were excluded. From the
initial 57 PTSD patients, seven were lost to follow-up,
three were excluded based on excessive motion during
scanning (see Supplementary information), one due to an
artifact in the MRI scan, and one due to refusal of
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scanning. One additional participant was excluded as she
was the only female in the sample. This lead to the final
sample of 44 PTSD patients. From the CC only one
subject had to be excluded based on excessive motion
(n= 28).
After a period of six to eight months in which patients

underwent treatment-as-usual consisting of trauma-
focused therapy (e.g., TF-CBT, EMDR) a second CAPS
assessment was performed. Treatment response was
defined as a ≥30% decrease of total CAPS score at follow-
up with respect to the baseline assessment38,39. According
to this criterion 24 PTSD veterans were defined as
responder and 20 as non-responder. All participants gave
written informed consent. The study was approved by the
University Medical Center Utrecht ethics committee, in
accordance with the declaration of Helsinki40.

Clinical data analysis
To estimate whether the CC, responders and non-

responders differed across any demographic or clinical
variables at baseline or follow-up ANOVA, Kruskal–Wallis,
χ2, or t-tests were applied as appropriate. All tests were
performed using the R software (version 3.5.1).

Data acquisition
All scans were obtained on a 3T MRI scanner (Philips

Medical System, Best, the Netherlands). The T1-weighted
high resolution MRI scan was acquired before the rs-fMRI
scan with the following parameters: repetition time (TR)=
10ms, echo time (TE)= 4.6ms, flip angle= 8°, 200 sagittal
slices, field of view (FOV)= 240 × 240 × 160, matrix size
= 304 × 299 and voxel size= 0.8 × 0.8 × 0.8 mm. The rs-
fMRI scan consisted of 320 T2*-weighted echo planar
interleaved slices with TR= 1600 ms, TE= 23 ms, flip
angle= 72.5°, FOV= 256 × 208 × 120, 30 transverse slices,
matrix size= 64 × 51, total scan time 8 min and 44.8 s,
0.4 mm gap, acquired voxel size= 4 × 4 × 3.60 mm). Par-
ticipants were asked to focus on a fixation cross, while
letting their mind wander and relax.

MRI data preprocessing
To estimate whether structural images carry information

to distinguish between responders or non-responders a
VBM analysis was performed. Gray matter (GM) voxel-
wise volume maps were computed using the SPM12 tool-
box (v7219, https://www.fil.ion.ucl.ac.uk/spm/software/
spm12/).
Resting-state fMRI images were preprocessed using the

advanced normalization tools (ANTs, 2.1.0, http://stnava.
github.io/ANTs/) and FMRIB Software Library (FSL,
5.0.10, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/. To control
for the influence of motion on the rs-fMRI data ICA-
AROMA was applied41. Details on the preprocessing
pipelines can be found in the Supplementary information.

Resting-state network identification
Preprocessed rs-fMRI data were analyzed to determine

group-level resting-state networks (RSNs). Group com-
ponents with a fixed number of 70 components were
estimated using a meta-ICA approach utilizing FSL’s
MELODIC software42 applied to the rs-fMRI data of the
CC. The identification of RSNs only on the data of the CC
was done to reduce the potential of overfitting during the
machine learning analysis since the training and test data
sets would have to be taken together when defining the
RSNs if data of the PTSD patients would be included.
However, a potential drawback is that the identified RSNs
might not optimally represent the rs-fMRI of the PTSD
patients. The number of components was fixed to 70
because it was shown to provide good insight into clinical
differences of patient groups43. However, it should be
noted that such a higher-order ICA can split up canonical
networks into multiple sub-networks which might reduce
the information present in each sub-network. The meta-
ICA approach allows for the identification of reproducible
and reliable group components44. After meta-ICA, 48
RSN’s were identified using a semi-automatic approach.
Thereafter, FSL’s dual regression approach was used to
estimate single-subject spatial representations of the
corresponding group networks for all patients. Details on
the implementation and rationale of the procedure can be
found in the Supplementary information, and signal and
noise components are illustrated in Figs. S1 and S2.

Univariate analysis
The preprocessed GM volume maps from the VBM

analysis and the identified RSNs were used to investigate
group differences between responders and non-
responders. Age and total intracranial volume were
entered as covariates for the VBM data, while only age
was used as covariate for the RSN data. The significance
level was set to P < 0.05 family-wise error (FWE) corrected
and estimated using the threshold-free-cluster-
enhancement statistic (TFCE)45 with permutation test-
ing (10,000 permutations) using the TFCE toolbox (r167,
http://dbm.neuro.uni-jena.de/tfce/) for the VBM data. For
the resting-state data, the PALM toolbox (a112, https://
fsl.fmrib.ox.ac.uk/fsl/fslwiki/PALM) was used since it
allowed for permutation-based FWE correction across the
whole-brain and all 48 RSNs at the same time. Both
analyses accounted for two-tailed tests.

Multivariate analysis
For the multivariate single-subject classification of

responders and non-responders, we used the GM volume-
maps from the VBM analysis and each RSN separately.
The classification was performed using a Gaussian pro-
cess classifier (GPC)46. Briefly, GPCs are multivariate
Bayesian classifiers which allow to obtain valid
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probabilistic predictions by estimating the posterior dis-
tribution, given a pre-defined prior distribution. GPCs are
a standard classifier used in machine learning for neu-
roimaging and has been shown to perform comparable to
support vector machines47. We utilized the ability of the
GPC’s to provide valid probabilistic predictions to inves-
tigate posthoc the performance of the classifier when a
‘reject’ option is implemented (see below). Univariate
feature selection was performed on the training set to
reduce the initial data dimension using nested 5-fold
cross-validation (see Supplementary information). The
performance was estimated by calculating sensitivity,
specificity, balanced accuracy, area under the receiver-
operator curve (AUC) and positive/negative predictive
value (PPV/NPV) using ten times repeated 10-fold cross-
validation to avoid overfitting bias. To estimate whether
our classifier performed better than chance, label per-
mutation tests with 1000 iterations were performed. The
final P-values were Bonferroni corrected for 49 tests.
We also investigated the performance of the GPC when

an uncertainty option was allowed: utilizing the prob-
abilistic output of the classifier, we established regions of
uncertainty for which the classifier would not make a
prediction. For example, with an uncertainty region of
10% any probabilistic GPC output for a new patient which
lies within 45–55%, would not be assigned a classification
label (because the classification into responders and non-
responders would be uncertain). Only patients with a
higher (or lower) probability would be assigned to a class
and considered for calculation of balanced accuracy. This
allowed us to investigate how well our GPC would per-
form if classification has only to be made if a specific level
of certainty is reached and how many patients would need
to be excluded to reach that level.
The code used in the analysis of the data can be made

available upon request.

Results
Clinical data
Demographic information, clinical variables and out-

comes of statistical tests can be found in Table 1. There
was no difference in demographics between the CC,
responders or non-responders, nor any clinical difference
between responders and non-responders at baseline. At
follow-up non-responders showed a higher total CAPS
score (t(42)= 7.89, P < 0.001) and higher use of serotonin
reuptake inhibitors (χ2(1)= 5.77, P= 0.02).

Univariate analysis
After correction for multiple comparisons across all

RSNs, the rs-fMRI analysis showed one network with
significantly increased connectivity in non-responders as
compared to responders (Fig. 1). The network was cen-
tered on the bilateral lateral frontal polar area and the

difference was observed in the right superior frontal gyrus
(PFWE= 0.04). In Fig. S4, we show all univariate group-
differences when no FWE-correction across networks was
applied, performed for illustrative purposes only. No sig-
nificant group differences in GM were observed.

Multivariate analysis
GPC’s trained on a network centered around the pre-

supplementary motor area (pre-SMA) could classify non-
responders and responders with an average cross-validated
balanced accuracy of 81.4% (SD: 17.2, PBonferroni < 0.05)
(Fig. 2a). The network showed excellent AUC (0.929, SD:
0.149) with high sensitivity (84.8%, SD: 25.1), moderately
high specificity (78% SD: 28.6), and high PPV/NPV (0.840/
0.835, SD: 0.214/0.262). No other network showed sig-
nificant classification performance after Bonferroni cor-
rection was applied, including the network that showed a
significant difference on the group-level in the univariate
analysis. However, if no Bonferroni correction is applied
this network becomes significant, as well as three additional
networks. Uncorrected networks and consistently selected
features are shown for illustrative purposes in Fig. S5.
To investigate which regions of the pre-SMA network

were most important for the classification process we
examined consistently selected voxels during the feature
selection process. We tracked the selection frequency of
voxels across cross-validation runs, looking at voxels
which were selected in >50% of the runs (Table 2 and
Fig. 3). Regions in both hemispheres located outside the
group-network were contributing to the classification
performance. The largest clusters were located in the left
inferior temporal gyrus (nvoxel= 14), left superior frontal
gyrus (nvoxel= 10), and right precentral gyrus (nvoxel= 9).
For illustrative purposes we also computed mean corre-
lations for responder and non-responder groups sepa-
rately between average time-courses of the largest clusters
(nvoxel > 5, Table 2) and the subject-specific time-courses
of the pre-SMA network identified by dual regression
(Fig. S3). Patterns of positive, negative and no significant
connectivity with the network can be observed. Note that
null-connectivity voxels might still contribute to the
classification by removing common noise sources from
the overall pattern48.
Additionally, we provided a posthoc evaluation of what

would happen if prediction would only be made for
patients for which a high degree of certainty of the clas-
sifier is established. As illustrated in Fig. 2b, this ability to
‘reject’ patients from the classification with increasing
classification certainty leads to increasing accuracy while
at the same time reducing the number of patients for
which the GPC can make a classification. For example,
once 12 patients (27%) with low prediction certainty of
0.41–0.59—where 0.5 is equal probability of prediction—
would be excluded, accuracy would increase to over 90%.
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Discussion
The present study investigated the possibility of using

pre-treatment structural MRI and rs-fMRI data to predict
the response to trauma-focused psychotherapy in male
combat veterans with PTSD. The results showed that rs-
fMRI data successfully distinguished between responders
and non-responders in univariate and multivariate ana-
lyses. The univariate analysis detected group differences
in a network centered on the frontal pole, and the

multivariate analysis predicted treatment response on an
individual level using pre-SMA connectivity with an
accuracy of 81.4%. Whereas previous studies have focused
on MRI-based treatment outcome predictors at the group
level, our results suggest that single-subject prediction is
also feasible. This result provides a proof-of-concept for
the feasibility of developing predictive biomarkers, which
could enable personalized treatment for patients
with PTSD.

Table 1 Demographics and clinical data.

Combat Controls (n= 28) Responders (n= 24) Non-Responders (n= 20) Test-value(df), P-value

Age (mean, SD [years]) 37.00 (10.13) 33.25 (7.76) 38.65 (9.34) F(2, 69)= 2.057, P= 0.136a

Gender (m/f) 28/0 24/0 20/0

Handedness (left/ambidexter/right) 2/3/23 2/2/20 2/2/16 χ2(4)= 0.207, P= 0.995b

Education (median, IQR [ISCED])

Own 6 [4.75, 7] 6 [5.75, 6] 5.5 [3, 6] χ2(2)= 4.005, P= 0.135c

Mother 3.5 [2, 6] 3 [2, 4] 3 [2, 6] χ2(2)= 1.325, P= 0.516c

Father 5 [2, 6.5] 3.5 [2.25, 7] 5 [2, 7] χ2(2)= 0.044, P= 0.978c

Time since last deployment (mean,
SD [years])

5.89 (6.56) 6.71 (7.83) 8.05 (9.51) χ2(2)= 0.218, P= 0.897c

Number of times deployed (1/2/3/ > 3) (10/8/4/6) (9/5/3/7) (8/3/6/2) χ2(2)= 0.416, P= 0.812

FD (mean, SD) 0.10 (0.04) 0.09 (0.05) 0.12 (0.07) χ2(2)= 3.278, P= 0.194c

TIV (mean, SD) 1550.02 (121.15) 1528.06 (166.44) t(42)=−0.506, P= 0.616d

Clinical scores at baseline

CAPS (mean, SD) 71.92 (15.06) 69.85 (11.45) t(42)= 0.504, P= 0.617d

Pre-treatment comorbid disorder baseline (SCID)

Mood disorder 13 10 χ2(1)= 0.076, P= 0.783b

Anxiety disorder 5 9 χ2(1)= 2.937, P= 0.087b

Somatoform disorder 1 1 χ2(1)= 0.017, P= 0.895b

Pre-treatment medication

SRI 5 7 χ2(1)= 1.104, P= 0.293b

Benzodiazepines 7 3 χ2(1)= 1.247, P= 0.264b

Antipsychotics 2 0 χ2(1)= 1.746, P= 0.186b

Total number of treatment sessions
(mean, SD)

9.86 (6.29) 10.05 (4.22) t(38)=−0.114, P= 0.910d

Received therapy

TF-CBT (yes/no) 6/18 10/10 χ2(1)= 2.946, P= 0.086b

EMDR (yes/no) 20/4 16/4 χ2(1)= 0.081, P= 0.775b

Clinical scores at post-treatment

CAPS (mean, SD) 29.75 (16.53) 68.55 (15.89) t(42)= 7.889, P < 0.001d*

Post-treatment comorbid disorder post-treatment (SCID)

Mood disorder 3 3 χ2(1)= 0.096, P= 0.757b

Anxiety disorder 2 5 χ2(1)= 2.516, P= 0.113b

Somatoform disorder 0 1 χ2(1)= 1.293, P= 0.256b

Alcohol dependency 0 2 χ2(1)= 2.650, P= 0.104b

Post-treatment medication

SRI 5 11 χ2(1)= 5.768, P= 0.016b*

Benzodiazepines 5 1 χ2(1)= 2.307, P= 0.129b

Antipsychotics 2 2 χ2(1)= 0.040, P= 0.841b

SD standard deviation, IQR interquartile range, ISCED international scale for education, FD framewise displacement, TIV total intracranial volume, CAPS clinician
administered PTSD scale, SCID structured clinical interview for DSM IV Axis II disorders, SRI serotonin reuptake inhibitor, TF-CBT trauma-focused cognitive behavioral
therapy, EMDR eye movement desensitization and reprocessing
aANOVA
bχ2
cKruskal–Wallis
dTwo-sample t-test
*P < 0.05
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Our multivariate analysis revealed the predictive
importance of the pre-SMA. This brain area is closely
linked to the SMA, and is involved in motor preparation,
response inhibition, and imagination49–51. Intriguingly,
resting-state connectivity within this network is also
predictive for the response to electroconvulsive therapy in
depression52. The main difference in results is that the
network in the current study is more confined to the pre-
SMA due to the use of ICA with 70 components instead
of 32 components, which was associated with a larger
network that consisted of a large part of the dorsomedial
prefrontal cortex. Together, this suggests that pre-SMA
connectivity may determine responsiveness to treatment,
regardless of intervention and disorder.
The discovered network is different from the ventral

attention network (VAN, consisting of the insula, dorsal
anterior cingulate, anterior middle frontal gyrus, and
supramarginal gyrus) that was recently reported. The
VAN in combination with delayed recall performance in a
verbal memory task could predict prolonged exposure
therapy outcome in a sample of ~19 civilians with PTSD
with sensitivity and specificity ≥80%25. But even though
both studies used rs-fMRI, the underlying biomarkers
cannot readily be compared. First, the variables tested in25

were discovered by performing comparisons between
healthy controls and PTSD patients, whereas we dis-
covered the pre-SMA network from comparisons between
responders and non-responders directly. Second, the
authors did not investigate any other networks beyond
the VAN for treatment outcome prediction. And third,
the brain regions that are part of the VAN were part of
distinct RSNs in our ICA analysis, whereas the VAN was

considered one network in the previous study. Therefore,
it remains to be tested whether VAN or pre-SMA con-
nectivity is also predictive in other samples. Regardless,
both studies demonstrate that rs-fMRI contains infor-
mation that is informative for predicting psychotherapy
outcome on an individual level.
The univariate group analysis showed increased con-

nectivity in non-responders in the frontal pole. The frontal
pole region (BA 10) has been implicated in a multitude of
cognitive tasks, including attention, perception, language,
and memory tasks53,54. Specifically, the lateral parts of the
frontal pole are more associated with working memory
and episodic memory retrieval while medial parts of the
frontal pole were mostly involved in mentalizing, which is
the reflection of your own emotions and mental states53,54.
This division of the frontal pole was recently confirmed by
a cytoarchitectonic parcellation indicating two distinct
areas: a more lateral frontal pole area 1 (FP 1) and a more
medial frontal pole area 2 (FP 2). Our frontal polar net-
work was mostly located in FP 1 and may, therefore, be
primarily associated with memory-related processes.
The difference between the identified networks in the

univariate and multivariate analyses might seem coun-
terintuitive at first but can be explained by the differences
in objective and methodology of both analyses. This dis-
crepancy is in line with the observation that significant
group-level differences do not necessarily translate to high
classification accuracies because of strongly overlapping
distributions and different goals of the analysis18,19. A
significant P-value in a group-level analysis does not have
to correspond to the ability of distinguishing between
individual patients because the statistically significant
difference in average values might show low effect sizes.
In these case classification performance will be low. In
addition, the goal of statistical inference is the identifi-
cation of localized differences between groups while the
goal of classification is to find the best multivariate
combination of data, which would allow to generalize the
effect to new subjects. These are two inherently different
goals which therefore can lead to different outcomes.
In contrast to our results, previous studies that have

used univariate analysis of structural MRI and task-based
fMRI data have primarily pointed to pre-treatment dif-
ferences in the anterior cingulate cortex, amygdala, hip-
pocampus, and insula13–17,32–35. However, direct
comparison with our study is difficult since there are
numerous differences between our study and those pre-
vious studies. For example, most studies that investigated
structural MRI data used a predefined region of interest
approach26,32,33,35 instead of a whole-brain approach.
Most fMRI studies have investigated task-induced chan-
ges instead of investigating resting-state fMRI record-
ings13–17. And finally, different types of psychotherapies
(such as prolonged exposure therapy), different PTSD

Fig. 1 Results of the group-level univariate RSN analysis. Higher
resting-state connectivity was observed in non-responders than
responders in the frontopolar network. Two-tailed P-value was
corrected for whole-brain comparisons and 48 networks.
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Fig. 2 Results of the single-subject multivariate prediction analysis of treatment outcome. a The classification metrics of the pre-SMA network
shown as box-and-whisker plots. Outliers plotted as circles were determined as values which lay outside 1.5 times the interquartile range. Please note
that the box for the AUC metric collapsed because the first quartile and the median were the same value. b Posthoc evaluation of accuracy of the
GPC classifier for various cut-off levels of probabilistic certainty. Calculations were performed for and averaged across the ten repetitions of the 10-
fold cross-validation with SD plotted as error bars. For example, once 12 patients (27%) with low prediction certainty of 0.41–0.59 —where 0.5 is
equal probability of prediction— would be excluded, accuracy would increase to over 90%.

Table 2 Most frequently selected features during the nested-cross-validation procedure of the pre-SMA network.

Number of voxels Max frequency within cluster (%) MNI coordinates of max value (mm) Region name

14 99 −52, 8, −34 Left inferior temporal gyrus

10 100 −24, 60, 22 Left superior frontal gyrus

9 100 64, 4, 14 Right precentral gyrus

7 100 −44, 8, −14 Left insula, left superior temporal pole

6 93 28, −80, 50 Right superior parietal lobule

6 100 0, −4, −2 Hypothalamus

4 98 0, 36, 58 Left medial frontal gyrus

4 89 32, 64, 6 Right middle frontal gyrus

4 96 48, −76, 18 Right middle occipital gyrus

2 92 0, −80, 46 Left precuneus

2 76 40, −84, 26 Right middle occipital gyrus

2 67 −44, 56, 2 Left middle frontal gyrus

2 75 48, 52, −6 Right middle orbitofrontal gyrus

2 63 36, 44, −18 Right inferior orbitofrontal gyrus

1 84 40, 56, −6 Right middle orbitofrontal gyrus

1 100 32, 64, 14 Right superior frontal gyrus

1 67 −4, 68, −10 Left medial orbitofrontal gyrus

1 57 4, −88, 34 Left cuneus

1 69 28, 8, 66 Right superior frontal gyrus

Zhutovsky et al. Translational Psychiatry           (2019) 9:326 Page 7 of 10



populations and experienced trauma, and different
treatment-criteria make a direct comparison challenging55.
This can be exemplified with the absence of results for

the structural MRI analysis which is in contrast to our
previous finding of differences in hippocampal volume
between patients with remitted vs. persistent PTSD26.
This difference could be due to the calculation of the
volumes: in the present study, a VBM analysis was
employed to provide a highly multivariate data set that
could be optimally used during the classification proce-
dure, whereas we previously estimated hippocampal
volume using segmentation in Freesurfer. In addition, in
this study we chose to focus on treatment response while
previously we investigated the more stringent criterion of
treatment remission to focus on PTSD persistence.
Finally, the previous study was employing a repeated-
measures design combining pre- and post-treatment data
while the current study only focused on the pre-
treatment data.

The current study has several limitations. The sample
size in the current study is small for a machine learning
application. This could result in high variance of the
estimated accuracy and the results, therefore, require
further validation and replication in independent sam-
ples56. Another limitation of this study is the use of an all-
male veteran sample. This limits the generalization of the
results to other patients with PTSD. Therefore, a repli-
cation of the proposed approach in a more diverse sample
would be desirable. Finally, the treatments received by the
patients represent a heterogeneous mix of different
trauma-focused psychotherapies. While they are con-
sidered as first-line treatments and the fact that in realistic
settings multiple treatments might be employed by
therapists, the results are not specific to one particular
treatment. Therefore, the current approach might obscure
specific individual patient-by-treatment interactions.
Future studies should aim to determine the most optimal
treatment for each patient.

Fig. 3 Best performing network in the multivariate classification (pre-SMA) in hot colors and the most often selected voxels during the classification in
cold colors.
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In conclusion, the current study shows that treatment
response to trauma-focused psychotherapy can be pre-
dicted for individual patients with PTSD using machine
learning analysis of rs-fMRI data. This proof-of-concept
study demonstrates the feasibility to develop neuroimaging
biomarkers for treatment response, which will enhance the
personalized treatment of patients with PTSD.
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